Curiosity rover explores Mars

All the latest images from the Red Planet, beamed back by NASA's Mars rover, Curiosity.

Curiosity rover explores Mars

Curiosity rover explores Mars

Curiosity rover explores Mars

Curiosity rover explores Mars

Curiosity rover explores Mars

Curiosity rover explores Mars

Curiosity rover explores Mars

Curiosity rover explores Mars

Curiosity rover explores Mars

Mars Rover Curiosity Finds Martian 'Flower' and Snake-Like Rock

The sinuous rock feature in the lower center of this mosaic of images recorded by the NASA Mars rover Curiosity is called "Snake River." Image taken Dec. 20, 2012.

Mars rover finds first evidence of water - a river of it

NASA's Curiosity rover found evidence for an ancient, flowing stream on Mars at a few sites, including the rock outcrop pictured here, which the science team has named "Hottah" after Hottah Lake in Canada’s Northwest Territories. It may look like a broken sidewalk, but this geological feature on Mars is actually exposed bedrock made up of smaller fragments cemented together, or what geologists call a sedimentary conglomerate. Scientists theorize that the bedrock was disrupted in the past, giving it the titled angle, most likely via impacts from meteorites. The key evidence for the ancient stream comes from the size and rounded shape of the gravel in and around the bedrock. Hottah has pieces of gravel embedded in it, called clasts, up to a couple inches (few centimeters) in size and located within a matrix of sand-sized material. Some of the clasts are round in shape, leading the science team to conclude they were transported by a vigorous flow of water. The grains are too large to have been moved by wind.

Mars rover finds first evidence of water - a river of it

In this image from NASA's Curiosity rover, a rock outcrop called Link pops out from a Martian surface that is elsewhere blanketed by reddish-brown dust. The fractured Link outcrop has blocks of exposed, clean surfaces. Rounded gravel fragments, or clasts, up to a couple inches (few centimeters) in size are in a matrix of white material. Many gravel-sized rocks have eroded out of the outcrop onto the surface, particularly in the left portion of the frame. The outcrop characteristics are consistent with a sedimentary conglomerate, or a rock that was formed by the deposition of water and is composed of many smaller rounded rocks cemented together. Water transport is the only process capable of producing the rounded shape of clasts of this size.

Mars rover finds first evidence of water - a river of it

This set of images compares the Link outcrop of rocks on Mars (left) with similar rocks seen on Earth (right). The image of Link, obtained by NASA's Curiosity rover, shows rounded gravel fragments, or clasts, up to a couple inches (few centimeters), within the rock outcrop. Erosion of the outcrop results in gravel clasts that fall onto the ground, creating the gravel pile at left. The outcrop characteristics are consistent with a sedimentary conglomerate, or a rock that was formed by the deposition of water and is composed of many smaller rounded rocks cemented together. A typical Earth example of sedimentary conglomerate formed of gravel fragments in a stream is shown on the right.

Mars rover finds first evidence of water - a river of it

This map shows the path on Mars of NASA's Curiosity rover toward Glenelg, an area where three terrains of scientific interest converge. Arrows mark geological features encountered so far that led to the discovery of what appears to be an ancient Martian streambed. The first site, dubbed Goulburn, is an area where the thrusters from the rover's descent stage blasted away a layer of loose material, exposing bedrock underneath. Goulburn gave scientists a hint that water might have transported the pebbly sandstone material making up the outcrop. The second feature, a naturally exposed rock outcrop named Link, stood out to the science team for its embedded, rounded gravel pieces. Such rounded shapes are strong evidence of water transport. The final feature, another naturally exposed rock outcrop named Hottah, offered the most compelling evidence yet of an ancient stream, as it contains abundant rounded pebbles. The grain sizes are also an important part of the evidence for water: the rounded pebbles, which are up to 1.6 inches (4 centimeters) in size, are too large to have been transported by wind.

Mars rover finds first evidence of water - a river of it

This image shows the Alpha Particle X-Ray Spectrometer (APXS) on NASA's Curiosity rover, with the Martian landscape in the background. The image was taken by Curiosity's Mast Camera on the 32nd Martian day, or sol, of operations on the surface (Sept. 7, 2012, PDT or Sept. 8, 2012, UTC). APXS can be seen in the middle of the picture.

Mars rover sends incredible photos

This image from NASA's Curiosity rover looks south of the rover's landing site on Mars towards Mount Sharp. This is part of a larger,high-resolution color mosaic made from images obtained by Curiosity's Mast Camera. In this version of the image, colors have been modified as if the scene were transported to Earth and illuminated by terrestrial sunlight. This processing, called "white balancing," is useful for scientists to be able to recognize and distinguish rocks by color in more familiar lighting.

Mars rover sends incredible photos

This color image from NASA's Curiosity rover shows an area excavated by the blast of the Mars Science Laboratory's descent stage rocket engines. This is part of a larger, high-resolution color mosaic made from images obtained by Curiosity's Mast Camera.

Mars rover sends incredible photos

This color image from NASA's Curiosity rover shows part of the wall of Gale Crater, the location on Mars where the rover landed on Aug. 5, 2012 PDT (Aug. 6, 2012 EDT). This is part of a larger, high-resolution color mosaic made from images obtained by Curiosity's Mast Camera.

Mars rover sends incredible photos

This color image from NASA's Curiosity rover looks south of the rover's landing site on Mars towards Mount Sharp. This is part of a larger, high-resolution color mosaic made from images obtained by Curiosity's Mast Camera.

Mars rover sends incredible photos

This is the first 360-degree panorama in color of the Gale Crater landing site taken by NASA's Curiosity rover on Mars. In the next few days, the software on Curiosity will be optimized for surface operation.

Mars rover sends incredible photos

This cut-out from a color panorama image taken by NASA's Curiosity rover shows the effects of the descent stage's rocket engines blasting the ground. It comes from the left side of the thumbnail panorama obtained by Curiosity's Mast Camera.

Mars rover sends incredible photos

This cut-out from a color panorama image taken by NASA's Curiosity rover shows the effects of the descent stage's rocket engines blasting the ground. It comes from the right side of the thumbnail panorama obtained by Curiosity's Mast Camera.Image credit: NASA/JPL-Caltech/MSSS

Mars rover sends incredible photos

This is a portion of the first color 360-degree panorama from NASA's Curiosity rover, made up of thumbnails, which are small copies of higher-resolution images. The mission's destination, a mountain at the center of Gale Crater called Mount Sharp, can be seen in the distance, to the left, beginning to rise up. The mountain's summit will be imaged later. The full thumbnail panorama from the Mast Camera can bee seen at PIA16029. Blast marks from the rover's descent stage are in the foreground. Image credit: NASA/JPL-Caltech/MSSS

Mars rover sends incredible photos

This full-resolution self-portrait shows the deck of NASA's Curiosity rover from the rover's Navigation cameras. The back of the rover can be seen at the top left of the image, and two of the rover's right side wheels can be seen on the left. Part of the pointy rim of Gale Crater forms the lighter color strip in the background. Bits of gravel, about 0.4 inches (1 centimeter) in size, are visible on the deck of the rover. This mosaic is made of eight images, each of 1,024 by 1,024 pixels, taken late at night on Aug. 7 PDT (early morning Aug. 8 EDT). It uses an average of the Navcam positions to synthesize the point of view of a single camera, with a field of view of 120 degrees. Seams between the images have been minimized, but a few are still visible. The wide field of view introduces some distortion at the edges of the mosaic. Image credit: NASA/JPL-Caltech

Mars rover sends incredible photos

These are the first two full-resolution images of the Martian surface from the Navigation cameras on NASA's Curiosity rover, which are located on the rover's "head" or mast. The rim of Gale Crater can be seen in the distance beyond the pebbly ground. The topography of the rim is very mountainous due to erosion. The ground seen in the middle shows low-relief scarps and plains. The foreground shows two distinct zones of excavation likely carved out by blasts from the rover's descent stage thrusters.

Mars rover sends incredible photos

This is a close-up view of a zone where the soil at Curiosity's landing site was blown away by the thrusters on the rover's descent stage. The excavation of the soil reveals probable bedrock outcrop. This is important because it shows the shallow depth of the soil in this area. The area surrounding the zones of excavation shows abundant small rocks that may form a pavement-like layer above harder bedrock.

Mars rover sends incredible photos

This is the first 360-degree panoramic view from NASA's Curiosity rover, taken with the Navigation cameras. Most of the tiles are thumbnails, or small copies of the full-resolution images that have not been sent back to Earth yet. Mount Sharp is to the right, and the north Gale Crater rim can be seen at center. The rover's body is in the foreground, with the shadow of its head, or mast, poking up to the right.

Mars rover sends incredible photos

This is the first image taken by the Navigation cameras on NASA's Curiosity rover. It shows the shadow of the rover's now-upright mast in the center, and the arm's shadow at left. The arm itself can be seen in the foreground.The navigation camera is used to help find the sun -- information that is needed for locating, and communicating, with Earth. After the camera pointed at the sun, it turned in the opposite direction and took this picture. The position of the shadow helps confirm the sun's location. The "augmented reality" or AR tag seen in the foreground can be used in the future with smart phones to obtain more information about the mission.

Mars rover sends incredible photos

This Picasso-like self portrait of NASA's Curiosity rover was taken by its Navigation cameras, located on the now-upright mast. The camera snapped pictures 360-degrees around the rover, while pointing down at the rover deck, up and straight ahead. Those images are shown here in a polar projection. Most of the tiles are thumbnails, or small copies of the full-resolution images that have not been sent back to Earth yet. Two of the tiles are full-resolution.

Mars rover sends incredible photos

NASA-JPL has released the Curiosity rover's first color image of the Martian landscape in this image released August 7, 2012. This view of the landscape to the north of NASA's Mars rover Curiosity was acquired by the Mars Hand Lens Imager (MAHLI) on the afternoon of the first day after landing. In the distance, the image shows the north wall and rim of Gale Crater. The image is murky because the MAHLI's removable dust cover is apparently coated with dust blown onto the camera during the rover's terminal descent. Images taken without the dust cover in place are expected during checkout of the robotic arm in coming weeks.NASA/JPL-Caltech/Malin Space Science Systems

Mars rover sends incredible photos

3-D View from Behind Curiosity This image is a 3-D view behind NASA's Curiosity rover, which landed on Mars on Aug. 5 PDT (Aug. 6 EDT). The anaglyph was made from a stereo pair of Hazard-Avoidance Cameras on the rear of the rover. It has been cropped.Part of the rim of Gale Crater, which is a feature the size of Connecticut and Rhode Island combined, stretches from the top middle to the top right of the image. One of the rover's wheels can be seen at bottom right. The bright spot is saturation from the sun.

Mars rover sends incredible photos

3-D View from the Front of Curiosity This image is a 3-D view in front of NASA's Curiosity rover, which landed on Mars on Aug. 5 PDT (Aug. 6 EDT). The anaglyph was made from a stereo pair of Hazard-Avoidance Cameras on the front of the rover. The image is cropped but part of Mount Sharp, a peak that is about 3.4 miles (5.5 kilometers) high, is still visible rising above the terrain.

Mars rover sends incredible photos

The four main pieces of hardware that arrived on Mars with NASA's Curiosity rover were spotted by NASA's Mars Reconnaissance Orbiter (MRO). The High-Resolution Imaging Science Experiment (HiRISE) camera captured this image about 24 hours after landing. The large, reduced-scale image points out the strewn hardware: the heat shield was the first piece to hit the ground, followed by the back shell attached to the parachute, then the rover itself touched down, and finally, after cables were cut, the sky crane flew away to the northwest and crashed. Relatively dark areas in all four spots are from disturbances of the bright dust on Mars, revealing the darker material below the surface dust.

Mars rover sends incredible photos

This image comparison shows a view through a Hazard-Avoidance camera on NASA's Curiosity rover before and after the clear dust cover was removed. Both images were taken by a camera at the front of the rover. Mount Sharp, the mission's ultimate destination, looms ahead.The view on the left, with the dust cover on, is one quarter of full resolution, while the view on the right is full resolution. Full-resolution images taken with the dust cover still on are not available at this time.The only other instrument on Curiosity with a dust cover is the Mars Hand Lens Imager (or MAHLI), located on the rover's arm. In this case, the dust cover is not removed but will be opened when needed. This way, the instrument is protected from dust that may be generated from other tools on the rover's arm, in addition to wind-blown dust.Image credit: NASA/JPL-Caltech

Mars rover sends incredible photos

This image shows one of the first views from NASA's Curiosity rover, which landed on Mars the evening of Aug. 5 PDT (early morning hours Aug. 6 EDT). It was taken through a "fisheye" wide-angle lens on one of the rover's Hazard-Avoidance cameras. These engineering cameras are located at the rover's base. As planned, the early images are lower resolution. Larger color images are expected later in the week when the rover's mast, carrying high-resolution cameras, is deployed. Image credit: NASA/JPL-Caltech

Mars rover sends incredible photos

NASA's Curiosity rover and its parachute were spotted by NASA's Mars Reconnaissance Orbiter as Curiosity descended to the surface on Aug. 5 PDT (Aug. 6 EDT). The High-Resolution Imaging Science Experiment (HiRISE) camera captured this image of Curiosity while the orbiter was listening to transmissions from the rover. Curiosity and its parachute are in the center of the white box; the inset image is a cutout of the rover stretched to avoid saturation. The rover is descending toward the etched plains just north of the sand dunes that fringe "Mt. Sharp." From the perspective of the orbiter, the parachute and Curiosity are flying at an angle relative to the surface, so the landing site does not appear directly below the rover.

Mars rover sends incredible photos

This image taken by NASA's Curiosity shows what lies ahead for the rover -- its main science target, Mount Sharp. The rover's shadow can be seen in the foreground, and the dark bands beyond are dunes. Rising up in the distance is the highest peak Mount Sharp at a height of about 3.4 miles, taller than Mt. Whitney in California. The Curiosity team hopes to drive the rover to the mountain to investigate its lower layers, which scientists think hold clues to past environmental change.

NASA's new Mars picture

A full-circle scene combining 817 images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity. The US space agency NASA is calling it the "next best thing to being" on the Red Planet.

NASA's new Mars picture

ESA's first mission to the Red Planet is Mars Express. It comprises an orbiter carrying seven scientific instruments to probe the planet's atmosphere, structure and geology, including a search for evidence of hidden water. The main spacecraft will also release the UK's small Beagle 2 lander to gather and test rock and soil samples on the surface. British space probe Beagle 2 failed to broadcast a signal on December 25, 2003, to confirm it had landed on Mars, but scientists said they were waiting for a second contact opportunity later on Thursday. REUTERS/European Space Agency

NASA's new Mars picture

This image mosaic taken by the Mars Exploration Rover Spirit's panoramic camera shows a new slice of martian real estate southwest of the rover's landing site. The landscape shows little variation in local topography, though a narrow peak only seven to eight kilometres away is visible on the horizon. A circular depression, similar to the one dubbed Sleepy Hollow, can be seen in the foreground. Compared to the Viking and Pathfinder landing sites, the terrain at Gusev Crater, Spirit's landing site, is flat and speckled with a sparse array of rocks. The picture was released by the Jet Propulsion Laboratory in Pasadena, California